Suggested oral mental starters (ongoing, throughout the term):

- Count from (and back to) 0 in multiples of $2,3,4,5,6,7,8,9,10,11,12,25,50,100$ and 1000 (consolidation from previous years)
- Recall and use multiplication and division facts for the $2,3,4,5,6,7,8,9,10,11,12$ times tables (up to the $12^{\text {th }}$ multiple)
(See Multiplication Tables Guidance, 2020)
- Find all factor pairs of a given number
- Multiply and divide numbers mentally drawing upon known facts e.g. $7 \times 6=42 ; 7 \times 60=420 ; 420 \div 70=6$
- Multiply numbers with up to two decimal places by 10 and 100 and divide corresponding numbers by 10 and 100
- Read, write, compare and order whole numbers up to 10,000 (and then 100,000)
- Read, write, compare and order numbers with up to two decimal places
- Recall and use addition and subtraction facts for multiples of 5 to 1000 (e.g. $485+515=1000,1000-775=225$)
- Given a number, identify the number that is $10 / 100 / 1,000$ more or less within 100,000
- Add three two- digit numbers together mentally (using jottings) e.g. $78+19+12=90+19=109$
- Find doubles of three-digit and four-digit numbers (using knowledge of partitioning and place value) and find corresponding halves
- Count forwards and backwards with positive and negative whole numbers (in steps other than one, including through zero -refer to number line)
- Reason about numbers and place value
- Convert between different units of measurement e.g. km to m, cm to mm , I to ml, kg to g , hours to minutes, weeks to days
- Compare and order fractions whose denominators are all multiples of the same number (using diagrams, resources and fraction walls to support)
- Consolidate telling the time to the nearest minute on an analogue clock and relate this to $12 / 24$ hour digital clocks (use daily routines to support telling the time)

Areas of Study	No of days	Statutory requirements and non-statutory guidance	Suggested Key Vocabulary
Number Number and place value Week 1	3-5	Consolidate reading and writing numbers to 10,000 Read and write numbers to 100,000 Given a number, identify the number that is ten, one hundred or one thousand more or less within 100,000 Order and compare (using < and> signs) numbers within 100,000 Round numbers within 100,000 to the nearest 10,100 or 1,000 Recognise the place value of each digit in a five-digit number Partition five-digit numbers into ten thousands, thousands, hundreds, tens and ones/units; continue to use place value cards and place value charts to support Reason about place value e.g. a number rounded to the nearest 100 is 4,300 . What is the largest number it could be? What is the smallest number it could be?	Partition, Place Value Digit, number Units/ones, Tens, Hundreds, Thousands, Ten thousands Order Compare More than, Less than, <, > Round

1
Produced for Southwark Primary Schools by a working party led by Diane Andrews, maths consultant

Number Decimals (and place value) Week 2	5	Consolidate tenths, hundredths and decimal equivalents e.g. 4 tenths $=4 / 10=0 \cdot 4 ; 5$ hundredths $=5 / 100=0.05 ; 27$ hundredths $=27 / 100=0.27$ (use visual resources to support understanding) Extend by introducing thousandths and relate them to tenths, hundredths and decimal equivalents $1 / 1000=0.001$ (relate to measures e.g. ml and I , and use a place value chart to support) Recognise the place value of each digit in a decimal number with two decimal places and extend to numbers with up to three decimal places (tens, units/ones, tenths, hundredths, thousandths) Partition decimal numbers into tens, units/ones, tenths, hundredths and extend to thousandths; use place value cards and charts to support Round decimal numbers with one or two decimal places to the nearest whole number Compare and order (using < and >) decimal numbers with up to two decimal places and extend to three decimal places; relate to money or measures e.g. Put these lengths in order from shortest to longest: $1.45 \mathrm{~m}, 1.05 \mathrm{~m}, 1.54 \mathrm{~m}, 1.5 \mathrm{~m}$ Put these weights in order from lightest to the heaviest: $1.355 \mathrm{~kg}, 2.54 \mathrm{~kg}, 0.825 \mathrm{~kg}, 1.5 \mathrm{~kg}$ Solve addition and subtraction word problems, using numbers with up to two decimal places and extend to numbers with up to three decimal places, in the context of money or measures	Partition, Place value Digit, number, decimal, decimal place, decimal point. tenth, hundredth, thousandth Order Compare More than, greater than, less than, <, > Round
Number Addition and Subtraction Week 3	5	Solve word problems using knowledge of place value to add/subtract tens, hundreds and thousands to a four-digit or five-digit number mentally with jottings, such as empty number lines, to support) e.g. There are 1,540 people at a football match. 400 more people are waiting to come in. How many people is that in total? Consolidate using the formal written method of addition to add two three-digit numbers Extend using the formal written method of addition to add two four digit numbers; decimal numbers, initially in the context of money and measures (See Written Calculation Policy, 2017) Consolidate the formal written method of subtraction to subtract two three-digit numbers Extend using the formal written method to subtract a three-digit number from a four-digit number; a four-digit number from a four-digit number; decimal numbers, initially in the context of money and measures (See Written Calculation Policy, 2017) Solve addition and subtraction one-step, two-step and multi-step word problems (including money and measures problems), deciding which operations to use e.g. A jug of juice contains $1,450 \mathrm{ml}$. I drink 335 ml and then accidentally spill 280 ml . How much juice is left in the jug? There are 2,540 people in the crowd at the football match and 870 are waiting to come in. What will the total number of people at the match be?	Digit Thousands, hundreds, tens, ones/units Addition, plus, altogether add, sum of, total, more than, increase Subtraction, subtract, minus, less than, decrease Calculate, calculation Problem, solution

\begin{tabular}{|c|c|c|c|}
\hline Number
Division

Week 6 \& 5 \& \begin{tabular}{l}
Calculate mathematical division statements for all times tables; solve missing number problems; use the inverse operation to check answers

Know and apply tests of divisibility for 2, 3, 5, 9, 10, 100

(See Multiplication Tables Guidance, 2020)

Consolidate the formal method of short division to divide a two digit number by a single digit and a three-digit number divided by a single-digit number, with whole number answers e.g. $196 \div 7=28$ and with remainders e.g. $127 \div 6=21 r 1$ (See Written Calculation Policy, 2017)

Solve word problems, which involve division with whole number answers and with remainders, using the formal written method of short division; begin to interpret remainders in context e.g.

I need 98 tangerines for a party. The tangerines come in bags of 5 . How many bags do I need? (round up)

I am collecting vouchers for sports equipment. I get one tennis ball for every 8 vouchers. I have 115 vouchers. How many tennis balls can I get with my vouchers? (round down)

 \&

Divide, division

Short division

Formal layout

Remainder Inverse

Calculation

Problem, solution

Round up

Round down
\end{tabular}

\hline Number
Fractions

Neek 7 \& 5 \& \begin{tabular}{l}
Write fractions (unit fractions and non-unit fractions) using notation and words; use the terms numerator and denominator

Compare and order fractions whose denominators are all multiples of the same number using diagrams and resources, such as a fraction wall, to support e.g. $3 / 4>1 / 2 ; 1 / 2<5 / 8$; order these fractions, starting with the smallest: $3 / 8,1 / 2,3 / 4,1 / 8,5 / 8$

Find unit and non-unit fractions of whole number quantities e.g.

$1 / 5$ of $40 ; 3 / 5$ of $20 ; 1 / 6$ of $£ 42 ; 5 / 6$ of $£ 42$; relate to multiplication and division

Recognise mixed numbers and improper fractions in context and/or using diagrams e.g.

I have $2 / 3$ of a mushroom pizza, and $2 / 3$ of a tomato pizza. I have $4 / 3$ (improper fraction) of a pizza altogether or $11 / 3$ of a pizza (mixed number); convert from one form to the other using simple examples e.g. $11 / 2=3 / 2 ; 13 / 4=7 / 4$

Identify, name and write equivalent fractions of a given fraction, including tenths and hundredths (use visual resources, such as a fraction wall, to support) e.g. $1 / 3=2 / 6 ; 3 / 4=6 / 8 ; 4 / 10=40 / 100$ Extend to equivalent fractions that are greater than 1 and are equivalent to an integer, e.g. $8 / 4=2,12 / 4=3$; relate to division

Add and subtract fractions with the same denominator, including examples that involve improper fractions (using diagrams and fraction walls to support) e.g.
$$
3 / 5+3 / 5=6 / 5=11 / 5 ; 7 / 8-3 / 8=4 / 8=1 / 2
$$

Reason about fractions e.g. If you put these fractions in order, starting with the smallest, which would come third? $3 / 5,1 / 10,1 / 5,7 / 10,1 / 15$. How did you work it out?

Which would you rather have? $3 / 5$ of $£ 40$ or $3 / 8$ of $£ 56$ Why?

 \&

Whole

Unit fraction, non-unit fraction

Numerator, denominator

Mixed number, improper fraction

Equivalent fraction
\end{tabular}

\hline
\end{tabular}

Number Percentages Week 8	5	Introduce the term percentage; recognise the per cent symbol (\%) and understand that per cent relates to number of parts per hundred; know where we use percentages in real life Write percentages as a fraction with denominator of 100 and as a decimal (use a hundred square to support understanding) e.g. $10 \%=10 / 100=1 / 10=0.1 ; 1 \%=1 / 100=0.01$ Know common fraction, decimal and percentage equivalents, e.g. $1 / 2=0.5=50 \% ; 1 / 10=0.1=10 \%$ ($2 / 10=0.2=20 \%$......) Solve simple percentage problems using knowledge of equivalent fractions and percentages, e.g. What is 50% of 120 ? How do you know? What is 10% of $£ 120$? How did you work it out? Place simple fractions, equivalent decimals and percentages on a number line; know that fractions decimals and percentages are all ways of expressing proportions Reason about decimal, fraction, percentage equivalences e.g. put these in order of size, starting with the smallest: $6 / 10,65 \%, 0.5,40 \%, 3 / 10$. How did you work it out?	Per cent \%, Percentage Equivalent
Measurement (Time) Statistics (reading time tables) Week 9	3	Consolidate telling the time to the nearest minute on an analogue clock (including using clocks with Roman numerals) and on a digital clock; convert between analogue and 12 hr digital time; continue to use noon, midnight, a.m./p.m. (taken from lower key stage 2 programmes of study) Consolidate conversion between 12 hour and 24 hour digital clocks e.g. What time on the 12 hour clock is 13:50? What time on the 24 hour clock is $8: 20 \mathrm{pm}$? (taken from Y4 programmes of study) NB use daily routines to support telling the time Solve problems by converting between units of time, e.g. How many seconds in 10 minutes? How many minutes in $2 \frac{1}{2}$ hours? A film lasts for 115 minutes. How long is this in hours and minutes? How many hours in one week? How many days until your next birthday? Read and interpret information in simple timetables, e.g. Interpret a simple train/bus timetable and answer questions using the timetable, initially using 12 hour digital time and extending to 24 hour digital time Extend by completing a simple timetable with missing information, e.g. The bus takes 20 minutes between each stop. It leaves at 11:05. What time will I arrive at the third stop? Show this on the timetable	All relevant vocabulary from previous years relating to time Duration, Timetable

Measurement Mass \& Capacity Week 10	5	Consolidate understanding of kilograms (kg) and grams (g) as units of measurement for mass using practical and real life objects e.g. Approximately, how much does a cat weigh? What unit of measurement would you use to weigh a tea bag? Use decimal notation for mass and convert between different units of mass e.g. $2 \mathrm{~kg}=2000 \mathrm{~g}$; $3.5 \mathrm{~kg}=3500 \mathrm{~g} ; 0.75 \mathrm{~kg}=3 / 4 \mathrm{~kg}=750 \mathrm{~g}$ Estimate and measure mass using appropriate units and equipment, including mixed units of measurement, and record using decimal notation, in practical contexts Consolidate understanding of litres (I) millilitres (ml) as a unit of measurement for capacity using practical and real life containers e.g. Approximately, what is the capacity of this cup? What unit of measurement would you use to measure the capacity of the bath? Use decimal notation for capacity and convert between different units of capacity e.g. $2 \mathrm{l}=2000 \mathrm{ml}$; $3.5 \mathrm{I}=3500 \mathrm{ml} ; 0.5 \mathrm{I}=1 / 2 \mathrm{I}=500 \mathrm{ml}$ Estimate and measure capacity using appropriate units and equipment, including mixed units of measurement, and record using decimal notation, in practical contexts Use a range of scales for mass and capacity with increasing accuracy, reading and interpreting between marked divisions (Possible link to Science Curriculum) Recognise some common imperial units of mass and capacity still in use today (stone, pound, pint)	Weight, mass Kilograms, kg, grams, g Capacity, measure Litre, I, millilitre, ml scale, division, interval Imperial units of measurement, stones, pounds, pints
Number Multiplication and division (Mental Methods) Week 11	5	Multiply numbers by ten, one hundred and then by one thousand (including decimal numbers) e.g. 0.9 $x 100=90 ; 4.2 \times 1000=420 ; 35.25 \times 10=352.5$; describe the effect using the language of place value Divide numbers by ten, one hundred and then by one thousand (including decimal answers) e.g. $850 \div 100=85 ; 463 \div 10=46.3 ; 3200 \div 1000=3.2$; describe the effect using the language of place value Use knowledge of place value to derive doubles and halves of decimal numbers e.g. double 0.34 ; double 1.25; half of 1.68 ; half of 5.2 Solve problems involving mental multiplication and division, including scaling by simple fractions, e.g. A kilogram of apples cost $£ 1.12$. How much would $1 / 2 \mathrm{~kg}$ cost? How much would 5 kg cost? A pencil costs 25 p. What would 10 pencils cost? What would a box of 100 pencils cost? What would a crate of 1,000 pencils cost? Use factor pairs to aid multiplication e.g. $6 \times 24=6 \times 2 \times 12=12 \times 12=144 ; 8 \times 16=8 \times 8 \times 2=64 \times 2=128$ (See Mental Calculation Strategies, 2017)	Place value, digit, decimal place, decimal point Multiply, multiplication, times, product Divide, division Factors, factor pairs

Medium Term Plans for Mathematics (revised 2020) - Year Five (Autumn Term)

Geometry	Position and direction	Represent the position of a shape following a reflection, using appropriate language and know that the shape has not changed; complete a symmetrical pattern, e.g. on squared paper using one line of symmetry and extend to two lines of symmetry
Week 12	Consolidate describing positions on a 2-D grid as co-ordinates in the first quadrant e.g. (4,3); plot specified points using co-ordinates in the first quadrant; plot a set of co-ordinates in the first quadrant to produce a simple picture or polygon; draw sides to complete a given polygon using co-ordinates in the first quadrant Using co-ordinates in the first quadrant describe and represent a shape following a translation and know that the shape has not changed, e.g. sketch the position of a triangle on a grid after it has moved 2 units to the left and 3 units up. Describe the new position using co-ordinates Possible link to Christmas theme	

Reflection, symmetry, symmetrical, line of symmetry

Co-ordinate, first quadrant position, translation

Additional weeks

To be used for:

- assessment, consolidation and responding to AfL
- additional using and applying activities
- Christmas maths activities

