Medium Term Plans for Mathematics (revised 2020) -Year Two (Summer Term)

Oral mental starters (ongoing, throughout the term):

- Count forwards from 0, and backwards, in twos, fives and tens to the $12^{\text {th }}$ multiple
- Recall multiplication and division facts for the 2,5 and 10 times table, including $\times 0$, up to the 12th multiple
- Count forwards from 0, and backwards, in threes to the $12^{\text {th }}$ multiple (See Multiplication Tables guidance, 2020)
- Say the number that is 10 more/less than any number within 100, beginning to bridge 100 (refer to the 100 square/200 grid)
- Count on and back in 10 s from any one or two digit number (refer to the 100 square) beginning to bridge 100 (refer to 200 grid)
- Count in fractions up to 10 e.g. $1 / 2,1,11 / 2,2 \ldots$
- Recall all pairs of numbers with a total of 20 and all pairs of numbers within 20 ; give addition and subtraction facts for the pair of numbers
- Derive pairs of multiples of 10 with totals up to 100 and give related addition and subtraction facts (e.g. $60+40=100,100-40=60$)
- Add three one-digit numbers, using knowledge of number pairs e.g. $8+2+6=10+6=16$
- Make estimates of quantities within 100 by grouping objects into $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s
- Recall/derive the doubles of multiples of 10 to 100 (e.g. double 50 is 100) and recall/derive the related halves (e.g. half of 100 is 50)
- Recognise odd/even numbers within 100
- Read the time to the nearest five minutes, including to the hour, the half hour and the quarter hour (past and to) using an analogue clock (use daily routines to support telling the time)

1

Medium Term Plans for Mathematics (revised 2020)-Year Two (Summer Term)

Medium Term Plans for Mathematics (revised 2020) -Year Two (Summer Term)

Number Addition \& Subtraction Week 4	5	Recall and use all pairs of numbers with a total of 20 and all pairs of numbers within 20; give addition and subtraction facts Derive pairs of multiples of 10 with totals up to 100 , using place value and knowledge of number pairs that total ten; give addition and subtraction facts Recognise the inverse relationship between addition and subtraction; show that addition of two numbers can be done in any order e.g. $60+40=100 ; 40+60=100 ; 100-40=60$; $100-60=40$ Solve missing number problems using known facts e.g. $70+\square=100$ Add any two two-digit numbers with the use of jottings such as an empty number line or partitioning; consider the use of a 100 square to support Subtract any two two-digit numbers within 100, using jottings such as an empty number line or partitioning; consider the use of a 100 square to support (See Written Calculation Policy, 2017 and Mental Calculation Strategies, 2017) Use estimation to check that answers are reasonable e.g. know that $34+25=58$ is incorrect because $4+5=9 ; 60+50>100$ because $50+50=100$	Addition,+, add, plus, more, put together, altogether, total, sum of, $=$, equals, is the same as Empty number line, count on Subtraction,- , take away, subtract, minus, count back How many are left? Inverse Estimate, estimation
Number Addition \& Subtraction (solving problems) Week 5	5	Solve one- step word problems, which involve addition/subtraction including problems that involve money and measurement e.g. Tom buys an apple costing 28p and a drink costing 45p. How much does he spend altogether? Extend with two-step problems for children 'working at greater depth' including questions that involve both addition and subtraction e.g. There are 28 girls and 45 boys in the playground. 14 children are called into the hall to have lunch. How many children are left on the playground? Solve missing number/empty box problems using addition/ subtraction and understanding of inverse operations e.g. $46-\square=41 ; 80=\square+30 ; \square+24=56$ Extend with more complex missing number problems for children 'working at greater depth' e.g. $24+\square=32+58$ Add three one-digit numbers, using knowledge of number pairs e.g. $8+6+2=8+2+6=10+6=16$; extend with e.g. $17+3+4=20+4=24$ Reason about addition and subtraction e.g. The sum of two odd numbers will always be even. True or false? How do you know? The sum of three odd numbers will always be odd. True or false? How do you know? Consider the problems 'Birds' eggs' and 'Three Monkeys' (See Mathematical Challenges for all pupils booklet, 2016)	Problem, answer/solution, calculate, calculation, inverse Odd/even numbers

Medium Term Plans for Mathematics (revised 2020)-Year Two (Summer Term)

Measurement Length Week 6	5	Choose and use appropriate standard units to estimate and measure length/ height in any direction (m / cm) of everyday objects to the nearest appropriate unit, using rulers and metre sticks; read scales in divisions of ones, twos, fives and tens in practical situations Know that there are 100 cm in a metre $(100 \mathrm{~cm}=1 \mathrm{~m})$ Compare and order lengths and record results using < and > signs Follow a line of enquiry relating to length e.g. Is this true or false? All Y2 children can jump more than one metre; our classroom is more than 8 metres in length. How will you find out? Solve simple word problems involving length/height using addition and subtraction; solve problems using simple multiples e.g. twice as tall; half as wide	Estimate, compare, measure metre (m), centimetre (cm) metre stick, ruler Longer than, shorter than, taller than Longest, tallest, shortest < and > signs Twice as (tall/ long) Half as (tall/long)
Statistics Data handling Week 7	5	Interpret tally charts, simple tables, pictograms and block diagrams Ask and answer simple questions involving totalling and comparing the data e.g. how many children altogether chose apples and bananas? How many more children chose cherries than pears? Interpret simple ratios in pictograms, for example where one face represents two children/ one book represents five books Interpret block diagrams with scales in divisions of one, two or five, where all numbers on the scale are given; extend with scales where not all the numbers are given for children 'working at greater depth' Follow a simple line of enquiry e.g. How did children in our class get to school today? How will you find out?	Block diagram, pictogram Table, list, tally chart, scale Data Collect (data)
Number Addition and subtraction (number facts and mental methods) Week 8	5	Consolidate vocabulary related to addition/subtraction Recall/derive pairs of multiples of ten with a total of 100 and give addition/subtraction facts e.g. $70+30=100 ; 100-30=70 \ldots$ Add/subtract ten and multiples of ten to any one-digit or two-digit number Add/subtract 9 to any one-digit or two-digit number by adding/subtracting ten and adjusting (consider using a 100 square to support) Use complementary addition to find small differences using concrete objects and by counting up on a number line, e.g. the difference between 39 and 43 is 4 ; the difference between 79 and 81 is $2 ; 51-48=3$ Recall/derive doubles of numbers up to double 12; recall/derive doubles of multiples of ten Use knowledge of doubles to add near doubles e.g. $6+7$ is double 6 add $1 ; 11+12$ is double 12 subtract 1 (See Mental Calculation Strategies, 2017)	Addition, +, add, plus, more, put together, altogether, total, sum of, count on $=$, equals, is the same as Subtraction,- , take away, subtract, minus, count back, difference How many are left?

Medium Term Plans for Mathematics (revised 2020) -Year Two (Summer Term)

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Geometry \\
Properties of shape \\
\& \\
Position and direction \\
Week 9
\end{tabular} \& 4

1 \& \begin{tabular}{l}
Identify and describe the properties of 2-D shapes, including the number of sides, number of corners, number of right angles and line symmetry (in a vertical line)

Reason about 2-D shapes e.g.

What is the same about these two shapes? What is different about these two shapes?

Show three different shapes and ask 'Which shape is the odd one out? Why?'

Is it always, sometimes or never true that when you fold a square in half you get a rectangle?

Identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces; identify 2D shapes on the surface of 3D shapes and use 'circular', 'rectangular', 'triangular' to describe faces

Reason about 3-D shapes e.g.

What is the same about these two shapes; what is different about these two shapes?

Show three different shapes and ask 'Which shape is the odd one out? Why?

Order and arrange combinations of shapes in patterns and sequences

 \&

All vocabulary relating to 2-D and 3-D shapes from previous terms

Pattern, sequence
\end{tabular}

\hline | Measurement |
| :--- |
| Time |
| |
| Geometry | \& 3 \& | Consolidate telling the time using an analogue clock: o'clock, half past, quarter past/quarter to; show/ draw the hands on a clock to show these times |
| :--- |
| Extend by telling and writing the time to five minutes on an analogue clock; show/draw the hands on a clock to show these times (consider counting in fives around the clock face) Use units of time (minutes \& hours) and know the relationships between them; know that there are 60 minutes in an hour and 24 hours in one day |
| Solve problems relating to time e.g. |
| I catch a train at half past nine in the in the morning to go on holiday. My journey lasts for three hours. At what time do I arrive? |
| The film starts at half past two and ends at half past four. How long does the film last? How many hours in two days? How many minutes in half an hour? How many minutes in two hours? | \& | O'clock, half past, quarter past, quarter to, five past, ten past... five to, ten to ... |
| :--- |
| Analogue clock |
| Minutes/hours |
| Days/hours |

\hline | Position and direction |
| :--- |
| Week 10 | \& 2 \& | Use mathematical vocabulary to describe position, direction and movement, including movement in a straight line |
| :--- |
| Recognise that a quarter turn is the same as a right angle; use the concept and language of angles to describe turns (clockwise and anti-clockwise)- whole turn, half turn, quarter turn, three-quarter turn (link to the clock face) |
| Give instructions using the language of position, direction and movement in practical contexts, such as in P.E. or when programming a robot | \& | Forwards/backwards, left/right, between |
| :--- |
| Turn, whole turn, half turn, quarter turn, three-quarter turn, right angle |
| Clockwise/anti-clockwise |

\hline
\end{tabular}

Medium Term Plans for Mathematics (revised 2020) -Year Two (Summer Term)

Additional weeks

To be used for:

- assessment, consolidation and responding to AfL
- additional using and applying activities

