Medium Term Plans for Mathematics (revised 2020) -Year Two (Autumn Term)

Suggested oral mental starters (ongoing, throughout the term):

- Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number
- Count forwards and backwards in twos, fives and tens to the $12^{\text {th }}$ multiple
- Recall multiplication and division facts for the 2 and 10 times table

(See Multiplication Tables Guidance, 2020)

- Given a number identify the number that is 1 more or less within 100 ; identify the number that comes between two numbers within 100
- Given a number identify the number that is 10 more or less than any number within 100 (refer to the hundred square)
- Count on and back in 10s from any one or two digit number (refer to the hundred square)
- Recall number bonds to ten and number bonds within 10; give addition and subtraction facts for the pair of numbers
- Recall/derive all pairs of numbers with a total of 20 ; give addition and subtraction facts for the pair of numbers
- Recall the doubles of all numbers to double ten $(10+10)$; derive halves of even numbers within 20
- Make estimates of quantities within 20 (and beyond)
- Recognise odd and even numbers to 20
- Use ordinal numbers ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ \qquad
- Consolidate days of the week, months of the year (use daily routines to reinforce)
- Read the time to the hour, the half hour and the quarter hour (past and then to) using an analogue clock (use daily routines to reinforce)

| Areas of
 Study | No of
 days | Statutory requirements and non-statutory guidance | Suggested
 Key Vocabulary |
| :---: | :---: | :--- | :--- | :--- |
| Number | $3-5$ | Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given
 number -consider as mental/oral starters
 Read and write numbers to 100 in numerals and begin to write them in words
 Given a number, identify the number that is one more or one less within 100
 Identify the number that comes between two numbers within 100
 Identify the number that is ten more/ ten less than a given number within 100 (use the 100
 square to support)
 Reason about numbers e.g.
 What is wrong with this sequence of numbers? 51, 50, 49, 47, 46.
 How do you know? | Nero, one, two........to one
 hundred |
| Week 1 | | Ten more, one less less
 Between, before, after | |

1
Produced for Southwark Primary Schools by a working party led by Diane Andrews, maths consultant

Medium Term Plans for Mathematics (revised 2020) -Year Two (Autumn Term)

Number Number and place value Week 2	5	Count on and back in 10s from any one or two digit number-consider as mental/oral starters (use the counting stick and 100 square to support) Recognise the place value of each digit in a two-digit number, using practical apparatus e.g. straws, cubes, ten sticks and units, Dienes, Unifix (grouped in tens), arrow/ place value cards, Numicon Partition two-digit numbers into tens and ones/units e.g. $34=30+4$ Solve missing number problems using knowledge of place value e.g. \square $\square+6=36$ Use knowledge of place value to order and compare two-digit numbers and position them on a number line and/or a hundred square Reason about numbers e.g. If you wrote these numbers in order, starting with the smallest, which one would come third: 42, 21, 40, 12, 14 Explain how you ordered the numbers	Place value Digit, tens, ones/units Partition Order
Number Addition Week 3	5	Consolidate the vocabulary and symbols (+ and =) related to addition Add numbers mentally and by using concrete objects, number tracks, marked number lines and /or 100 square - a two-digit number add a one- digit number within 50 (and then beyond), by counting on e.g. $22+5=27 ; 38+4=42$ Begin to use an empty number line to add a one -digit number to a two-digit number within 50 (and then beyond 50), initially where no regrouping/ bridging is required e.g. $34+5=39$ Extend by bridging the tens boundary e.g. $37+5=42$ (See Written Calculation Policy, 2017 and Mental Calculation Strategies, 2017) Solve one-step word problems, which involve addition, using any of the following: concrete objects and pictorial representations; number tracks/ marked number lines; hundred square; empty number lines e.g. Amy has 28 marbles. Her brother gives her five more. How many marbles does Amy have now? Solve missing number problems e.g. $24+\square=29 ; 28+\square=32$	Addition + add, plus, more, put together, altogether, total Count on =, equals, is the same as Number sentence, calculation Empty number line Problem, answer/solution, Calculate Missing number

Medium Term Plans for Mathematics (revised 2020) -Year Two (Autumn Term)

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Number \\
Subtraction \\
Week 4
\end{tabular} \& 5 \& \begin{tabular}{l}
Consolidate the vocabulary and symbols (- and =) related to subtraction \\
Subtract numbers mentally and by using concrete objects, number tracks, marked number lines and/or 100 square - two-digit number subtract a one- digit number within 50 (and then beyond) by counting back \\
Begin to use an empty number line to subtract a one digit number from a two-digit number within 50 (and beyond), initially where no regrouping/ bridging is required e.g. \(28-5=23\) Extend by bridging the tens boundary e.g. \(45-6=39\) \\
(See Written Calculation Policy, 2017 and Mental Calculation Strategies, 2017) \\
Solve simple one -step word problems, which involve subtraction, using any of the following: concrete objects and pictorial representations; number tracks/marked number lines; hundred square; empty number lines \\
Solve missing number problems e.g. \(48-\square=42 ; 32-\square=28\)
\end{tabular} \& \begin{tabular}{l}
Subtraction - \\
Take away, subtract, minus How many are left? \\
Count back \\
=, equals, is the same as \\
Number sentence, calculation \\
Empty number line \\
Problem, answer/solution, Calculate \\
Missing number
\end{tabular} \\
\hline \begin{tabular}{l}
Number \\
Addition and subtraction (facts) \\
\& \\
Geometry \\
Properties of shape (2D) \\
Week 5
\end{tabular} \& 2

3 \& \begin{tabular}{l}
Recognise and use the inverse relationships between addition and subtraction; Recall number bonds to 10 and reason about associated facts e.g.
$$
6+4=10, \text { therefore } 4+6=10 ; 10-6=4 ; 10-4=6
$$

Derive number bonds to 20 using knowledge of number bonds to ten Solve missing number problems using addition and subtraction facts to 20
e.g.
\square $+18=20 ; 20$ - \square $=18$

Add three one-digit numbers e.g. $4+2+6=$ \square

Solve problems related to addition e.g. 'Bean-bag buckets'

(See Mathematical Challenges for all pupils booklet, 2016)

Identify and describe the properties of 2D shapes (see vocabulary), including the number of sides and corners; recognise 2D shapes in different orientations

Sort common 2D shapes, for example using simple Venn diagrams or sorting circles Compare and reason about common 2D shapes e.g. respond to questions, 'What's the same about these two shapes?' 'What's different about these two shapes?'

Identify line symmetry (in a vertical line) in common 2D shapes in practical contexts e.g. by folding shapes

Create or complete repeating patterns using known 2D shapes

 \&

Inverse

Number bonds

Missing number

Rectangle, square, circle and triangle, side, corner Extend with: pentagon, hexagon

Venn diagram, sort

Symmetry, line of symmetry

Repeating pattern
\end{tabular}

\hline
\end{tabular}

Medium Term Plans for Mathematics (revised 2020) -Year Two (Autumn Term)

Medium Term Plans for Mathematics (revised 2020) -Year Two (Autumn Term)

Number Fractions Week 8	5	Consolidate recognising, naming and finding half of familiar shapes; know that a half is one of two equal parts; introduce fraction notation ($1 / 2$) Consolidate recognising, naming and finding a quarter of familiar shapes; know that a quarter is one of four equal parts; introduce fraction notation ($1 / 4$) Find $1 / 2$ and $1 / 4$ of a set of objects using practical resources, diagrams and pictures e.g. $1 / 2$ of $12=6,1 / 4$ of $8=2$ (link unit fractions to equal sharing and grouping) Solve word problems, which involve fractions ($1 / 2,1 / 4$), using concrete objects, diagrams and pictorial representations to support e.g. I have 16 cherries and I give half of them to my friend Sita. How many cherries do I give to Sita? How many do I have left? There are 12 biscuits in a packet. I eat $1 / 4$ of them. How many biscuits do I eat? Reason about fractions e.g. would you rather have $1 / 2$ of 8 cherries or $1 / 4$ of 12 cherries? How did you work it out?	Fraction Equal parts Half, quarter, whole $1 / 2,1 / 4$ Problem, answer/solution
Measurement Time Week 9	5	Consolidate reading time to the hour and the half hour using an analogue clock face Read the time to the quarter hour (quarter past the hour) using an analogue clock face Draw hands on a clock face to show these times e.g. 4 o'clock; half past ten; quarter past five Extend with quarter to the hour NB use daily routines to support telling the time and make the link with fractions Use units of time (minutes \& hours) and know the relationships between them; know that there are 60 minutes in an hour (one hour $=60$ minutes) Understand units of time e.g. What takes about one minute to do? How many times can you write your name in one minute? What takes about one hour to do? Consolidate days of the week and months of the year; order days of the week and months of the year (use daily routines to support this)	O'clock, half past, quarter past, (quarter to) Analogue clock Minutes/hours Days of week (Monday, Tuesday...) Months of year (January, February...)

Medium Term Plans for Mathematics (revised 2020) -Year Two (Autumn Term)

Measurement Length Statistics Data handling Week 10	3	Use metre (m) and centimetre (cm) as standard units of length and height e.g. find objects that are longer/ shorter than a metre, that are about 10 centimetres Know that there are 100 cm in a metre $(100 \mathrm{~cm}=1 \mathrm{~m})$ Choose and use appropriate standard units (m or cm) to estimate and then measure length/ height (m / cm) of everyday objects to the nearest appropriate unit, using rulers and metre sticks; compare and order lengths using comparative language Follow a simple line of enquiry relating to length e.g. Is this true or false? All Year 2 children's feet measure more than 18 cm . How will you find out? Interpret a simple pictogram; answer simple questions about a pictogram by counting the number of objects in each category e.g. How many children have a birthday in April? Collect data using a simple table and use the results to construct simple pictograms e.g. What is the favourite pet of children in our class? Answer simple questions about their own pictogram by counting the number of objects in each category e.g. How many children chose cat as their favourite pet? Which pet was chosen by the most children? Extend with 'How many more....?' Questions e.g. How many more children chose dogs than cats?	Estimate, compare, measure metre (m), centimetre (cm) Metre stick, ruler Longer than, shorter than, taller than Longest, tallest, shortest Pictogram Table, list Data Collect (data)
Number Addition and subtraction 	2	Use an empty number line to add a one -digit number to a two-digit number within 100, including bridging the tens boundary, by counting on $\text { e.g. } 48+6=54 ; 67+5=72$ Use an empty number line to add ten(s) to a two-digit number within 100 e.g. $32+10=42$; $56+20=76$ Use an empty number line to subtract a one - digit number from a two-digit number within 100 , including bridging the tens boundary, by counting back $\text { e.g. } 30-7=23 ; 55-6=49$ Use an empty number line to subtract ten(s) from a two-digit number within 100 $\text { e.g. } 52-10=42 ; 45-20=25$ (See Written Calculation Policy, 2017 and Mental Calculation Strategies, 2017)	Empty number line Count on, count back

6
Produced for Southwark Primary Schools by a working party led by Diane Andrews, maths consultant

Measurement Money Week 11	3	Recognise different coins (including £1), and understand their value Recognise notes ($£ 5, £ 10, £ 20$) Use the symbols ($£$) and pence (p); know the relationship between pounds and pence $(£ 1=100 p)$ Solve problems involving combinations of coins e.g. How much money is in my purse? How many different ways can you make 8 p using combinations of coins? Which silver coins could you use to pay for a banana that costs 30p? Solve simple word problems involving addition and subtraction in contexts of money (within $20 p$ or $50 p$) including giving change e.g. An apple costs 12 p and a satsuma costs 8 p. How much do I pay altogether? I buy a note book for 25 p and a pencil for 20p. How much do I pay altogether? How much change will I get if I pay with 50p? Solve simple word problems involving addition and subtraction in contexts of money using whole pounds only including giving change e.g. Sam buys a game for $£ 18$ and a comic for $£ 4$. How much does he spend? Kemi buys a pen that costs $£ 10$ and a book that costs $£ 8$. How much does it cost for the pen and the book? How much change will Kemi get if she pays with a £20 note?	Coin, note Pence (p), penny Pound (£) Buy, spend, change, pay, costs How much? Calculate, calculation Problem, answer/solution How did you work it out?
Geometry Properties of shapes (2D and 3D) Week 12	5	Consolidate names of common 2-D shapes Identify line symmetry in known 2D shapes and simple pictures; recognise if a shape or picture is symmetrical Consolidate names of common 3-D shapes (see vocabulary); describe the properties of 3D shapes including using the words edges, faces and vertices Relate 3D shapes to everyday objects Identify 2D shapes on the surface of 3D shapes Sort common 3D shapes e.g. by the number of faces or by the shape of faces, using simple Venn diagrams or sorting circles (Possible link to a Christmas theme)	Rectangle, square, circle, triangle, pentagon, hexagon Symmetry, symmetrical, line of symmetry Cylinder, cone, cube, cuboid, pyramid Extend with prism Edges, faces, vertices

Additional weeks

To be used for:

- assessment, consolidation and responding to AfL
- additional using and applying activities
- Christmas maths activities

